
Issue#499

Problem Statement

3

§ To allow a seamless integration of DAPHNE into the existing Python-based data science 

ecosystem, exchanging data between DaphneLib and established Python libraries for data 

science must be simple

§ Data transfer should be efficient via shared memory, ideally in a zero-copy manner

§ Initial infrastructure for a zero-copy data exchange between DAPHNE and numpy has been 

developed in the context of a bachelor thesis in DAPHNE

§ This project is about extending the existing infrastructure by supporting the efficient data 

exchange with more data science libraries: Pandas, TensorFlow, and PyTorch. 

LDE Project – Daphne | Efficient data exchange with popular Python libs



Extend the Python Interface with the 
ability to transfer Pandas Data-Frames 
between Daphne and Python

Pandas

4LDE Project – Daphne | Efficient data exchange with popular Python libs



Solution Design
Pandas

5

Create a Daphne Matrix per Column with Numpy

Use the “createFrame” Constructor with the Matrixes 

Use the Daphne TMP-Script Building Mechanism

Use the “saveDaphneLibResult” Function for transfer 
back 

LDE Project – Daphne | Efficient data exchange with popular Python libs



df: DataFrame
shared_memory: Bool

verbose: Bool
keepIndex: Bool

:return: 
A Frame DAGNode

Implementation – Simplified

Pandas

6

type: ‘shared memory’
verbose: Bool

useIndexColumn: Bool

:return: 
A Pandas Data-Frame

dag_root: DAGNode
type: ‘shared memory’

from_pandas

Daphne Context

compute

Operation Node

build_code

Script

Writes and Executes the 
DaphneDSL Script

execute

LDE Project – Daphne | Efficient data exchange with popular Python libs



Implementation – Example

Pandas

7LDE Project – Daphne | Efficient data exchange with popular Python libs



Implementation – Example

Pandas

8LDE Project – Daphne | Efficient data exchange with popular Python libs



Implementation – Example

Pandas

9LDE Project – Daphne | Efficient data exchange with popular Python libs



Implementation – Example

Pandas

10LDE Project – Daphne | Efficient data exchange with popular Python libs



Implementation – Example

Pandas

11LDE Project – Daphne | Efficient data exchange with popular Python libs



Implementation – Example

Pandas

12LDE Project – Daphne | Efficient data exchange with popular Python libs



Extend the Python Interface with the 
ability to transfer 2-d & n-d Tensors 
between Python and Daphne

Tensorflow
& PyTorch

13LDE Project – Daphne | Efficient data exchange with popular Python libs



Solution Design

14

Optional: Save the original shape of the n-d Tensor 

Flatten the Tensor and transform it to Numpy Array

Reuse existing Numpy Functions for the Matrix 
Transfer

Extend Compute Function to transform Matrix to 
Tensor

Tensorflow
& PyTorch

LDE Project – Daphne | Efficient data exchange with popular Python libs



tensor: Tensor
shared_memory: Bool

verbose: Bool
return_shape: Bool

:return: 
A Matrix DAGNode

(original shape: shape)

Implementation – Simplified

Tensorflow & PyTorch

15

type: ‘shared memory’
verbose: Bool

isTensorflow: Bool
isPytorch: Bool
shape: shape

:return: 
A Pandas Data-Frame

dag_root: DAGNode
type: ‘shared memory’

from_pytorch

Daphne Context

compute

Operation Node

build_code

Script

Writes and Executes the 
DaphneDSL Script

execute

LDE Project – Daphne | Efficient data exchange with popular Python libs



During Implementation
Challenges

16LDE Project – Daphne | Efficient data exchange with popular Python libs



Challenges

17

Memory Management – Prevent Memory Overflow

Zero Copy Approach – Prevent Copying within all 
functions

Preserve Python object integrity during Daphne 
transfer

LDE Project – Daphne | Efficient data exchange with popular Python libs



Challenges

18

Memory Management – Prevent Memory Overflow

Added a delete Function for manual Memory free up

• Delete all the C++ pointers related to the object
• Reset the RefCounter for the object in Daphne
• Mark the Python Object as deleted

LDE Project – Daphne | Efficient data exchange with popular Python libs



Challenges

19

Zero Copy Approach – Prevent Copying within all 
functions

Critically assessed & benchmarked each function

• Checked the Memory usage with “memory-profiler”
• Usage of only Zero-Copy Functions within Python
• Benchmarked each transformation step 

LDE Project – Daphne | Efficient data exchange with popular Python libs



Challenges

20

Preserve Python object integrity during Daphne 
transfer

Python Input Objects can be reproduced from the 
Daphne Output 

• Compared Python Input to Output
• Implemented Functionality to preserve Tensor 

Shapes
• Implemented Functionality to preserve DF Index 

Column

LDE Project – Daphne | Efficient data exchange with popular Python libs



Extend the Python Interface with 
Daphne SQL and Join Operations for 
Frames

Further 
Adjustments

21LDE Project – Daphne | Efficient data exchange with popular Python libs



22

Daphne SQL

Further Adjustments

LDE Project – Daphne | Efficient data exchange with popular Python libs



23

Daphne Joins

Further Adjustments

LDE Project – Daphne | Efficient data exchange with popular Python libs



Conduct tests & experiments and 
benchmarks for our solutions

Experiments
& Results

24LDE Project – Daphne | Efficient data exchange with popular Python libs



Pandas

25

pandas performancetest 1

pandas Performancetest 2

pandas Performancetest 3

Experiments
& Results

LDE Project – Daphne | Efficient data exchange with popular Python libs



26

Pandas

Experiments
& Results

pandas performancetest 1

Showcase handling of different DF types

• importing DFs in various types from python into daphne 
with the from_pandas() function

• Series, Sparse DF and Categorical DF are converted to 
regular DFs to be supported

• rbind() and cartesian() are performed as a computations
• Minimal time lost for DF conversion step

LDE Project – Daphne | Efficient data exchange with popular Python libs



27

Pandas

Experiments
& Results

pandas performancetest 2

Benchmark importing DFs with from_pandas()

• The type of DF is checked and converted if necessary
• Execution times for each column, all columns, overall 

and type check are saved

Still Present Issue

• With larger dataframe sizes, execution times per column 
show significant variance

• “Cold Start Effects”

LDE Project – Daphne | Efficient data exchange with popular Python libs



28

Pandas

Experiments
& Results

pandas performancetest 2

LDE Project – Daphne | Efficient data exchange with popular Python libs



29

Pandas

Experiments
& Results

pandas performancetest 3

Benchmark Daphne compute() for pandas DFs

• Execution Times for the execute() function, the 
computing operation of building the dataframe and 
overall compute() function are saved

Still Present Issue

• “Execute”-Function is still a significant bottleneck
• “Cold Start Effects”

LDE Project – Daphne | Efficient data exchange with popular Python libs



30

Pandas

Experiments
& Results

pandas performancetest 3

LDE Project – Daphne | Efficient data exchange with popular Python libs



PyTorch

31

PyTorch Performancetest 1

PyTorch Performancetest 2

Experiments
& Results

LDE Project – Daphne | Efficient data exchange with popular Python libs



32

PyTorch

Experiments
& Results

PyTorch Performancetest 1

Benchmark importing PyTorch tensors with from_pytorch()

• Execution Times for the PyTorch Tensor Reshape 
Execution, Numpy Execution time and overall execution 
are saved

Still Present Issue

• “Cold Start Effects”

LDE Project – Daphne | Efficient data exchange with popular Python libs



33

PyTorch

Experiments
& Results

PyTorch Performancetest 1

LDE Project – Daphne | Efficient data exchange with popular Python libs



34

PyTorch

Experiments
& Results

PyTorch Performancetest 2

Benchmark Daphne compute() for pytorch tensors

• Execution Times for the execute() function execution, 
the PyTorch Tensor Transformation execution and 
overall execution are saved

Still Present Issue

• “Execute”-Function is still a significant bottleneck
• “Cold Start Effects”

LDE Project – Daphne | Efficient data exchange with popular Python libs



35

PyTorch

Experiments
& Results

PyTorch Performancetest 2

LDE Project – Daphne | Efficient data exchange with popular Python libs



Tensorflow
vs PyTorch

36

from_pytorch() is 75x faster than from_tensorflow()

Torch has 750x faster Tensor Transformation in 
compute()

Tensorflow has no native Numpy Transformation 
Function

Experiments
& Results

LDE Project – Daphne | Efficient data exchange with popular Python libs



Summary & Forward Directions
Conclusion

37LDE Project – Daphne | Efficient data exchange with popular Python libs



Summary of PR#585 

Conclusion

38

• Added Pandas Shared Memory Support for Frames

• Added Pytorch & Tensorflow Shared Memory Support for 2d & nd Tensors

• Added Updates to the Numpy functions & to the Frame and Matrix Operators in Python

• Added Support for Daphne SQL and Joins for Frames

• Added a delete function for Daphne Objects in Python to prevent Memory Overflow

• Designed all functions in a zero-copy manner with strong focus on performance

• Implemented Examples for all the added functions

• Implemented Benchmarks & Listed Benchmark Results

• Implemented Functionality Tests into the automated Test Script

LDE Project – Daphne | Efficient data exchange with popular Python libs



Areas to Improve & Forward Direction

Conclusion

39

Data Frame handling Tensor handling

• String Support

• Enhance the current column wise approach
(e.g., Vectorization)

• Add further Join Types (currently only Inner)

• Enhance the SQL capabilities

• Add further Frame Operators

• Add Native Tensor Support in Daphne

• Add Tensor specific Operators in Daphne

• Review the Tensor Functions in GPU 
Accelerated Environments 

• Zero-Copy Tensor Transformation is only 
supported for CPU Operation!

LDE Project – Daphne | Efficient data exchange with popular Python libs



Areas to Improve & Forward Direction

Conclusion

40

Overall Improvements Environment based

• Multi Return DAGNode Type for Multi Return 
Handling within Daphne (Partially Done)

• Enhance the current approach with 
temporary daphne files

• Enhance the Delete Function for DAGNode
Objects (integrate into “__del__()“ Function )

• Continue with further testing within different 
Environment Setups 
(Currently only Docker Containers within ARM 
MacBooks could be tested) 

• Integrate Libraries into Daphne Containers via pip: 
- tensorflow (newest Version)
- pandas (newest Version)
- pillow (had to be installed manually for PyTorch)
- torch, torchvision, torchaudio (newest Version)

LDE Project – Daphne | Efficient data exchange with popular Python libs



Backup

43LDE Project – Daphne | Efficient data exchange with popular Python libs



44

Memory Management – Prevent Memory Overflow

LDE Project – Daphne | Efficient data exchange with popular Python libs



45

TensorFlow

Experiments
& Results

Tensorflow Performancetest 1

LDE Project – Daphne | Efficient data exchange with popular Python libs



46

TensorFlow

Experiments
& Results

Tensorflow Performancetest 2

LDE Project – Daphne | Efficient data exchange with popular Python libs


